Solvent effects in the helix-coil transition model can explain the unusual biophysics of intrinsically disordered proteins.
نویسندگان
چکیده
We analyze a model statistical description of the polypeptide chain helix-coil transition, where we take into account the specificity of its primary sequence, as quantified by the phase space volume ratio of the number of all accessible states to the number corresponding to a helical conformation. The resulting transition phase diagram is then juxtaposed with the unusual behavior of the secondary structures in Intrinsically Disordered Proteins (IDPs) and a number of similarities are observed, even if the protein folding is a more complex transition than the helix-coil transition. In fact, the deficit in bulky and hydrophobic amino acids observed in IDPs, translated into larger values of phase space volume, allows us to locate the region in parameter space of the helix-coil transition that would correspond to the secondary structure transformations that are intrinsic to conformational transitions in IDPs and that is characterized by a modified phase diagram when compared to globular proteins. Here, we argue how the nature of this modified phase diagram, obtained from a model of the helix-coil transition in a solvent, would illuminate the turned-out response of IDPs to the changes in the environment conditions that follow straightforwardly from the re-entrant (cold denaturation) branch in their folding phase diagram.
منابع مشابه
Unified description of solvent effects in the helix-coil transition.
We analyze the problem of the helix-coil transition in explicit solvents analytically by using spin-based models incorporating two different mechanisms of solvent action: explicit solvent action through the formation of solvent-polymer hydrogen bonds that can compete with the intrinsic intra-polymer hydrogen bonded configurations (competing interactions) and implicit solvent action, where the s...
متن کاملMolecular dynamics studies on the denaturation of polyalanine in the presence of guanidinium chloride at low concentration
Molecular dynamic simulation is a powerful method that monitors all variations in the atomic level in explicit solvent. By this method we can calculate many chemical and biochemical properties of large scale biological systems. In this work all-atom molecular dynamics simulation of polyalanine (PA) was investigated in the presence of 0.224, 0.448, 0.673, 0.897 and 1.122 M of guanidinium chlorid...
متن کاملOn the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome
Intrinsically disordered proteins that populate the so-called "Dark Proteome" offer challenging benchmarks of atomistic simulation methods to accurately model conformational transitions on a multidimensional energy landscape. This work explores the application of parallel tempering with implicit solvent models as a computational framework to capture the conformational ensemble of an intrinsical...
متن کاملSolute effects on the helix-coil transition.
We discuss the effects of the solvent composition on the helix-coil transition of a polypeptide chain. We use a simple model to demonstrate that improving the hydrogen-bonding ability of the solvent can make the transition less cooperative, without affecting the transition temperature. This effect is very different from other solvent effects which primarily influence the melting transition rath...
متن کاملInclusion of many-body effects in the additive CHARMM protein CMAP potential results in enhanced cooperativity of α-helix and β-hairpin formation.
Folding simulations on peptides and proteins using empirical force fields have demonstrated the sensitivity of the results to details of the backbone potential. A recently revised version of the additive CHARMM protein force field, which includes optimization of the backbone CMAP potential to achieve good balance between different types of secondary structure, correcting the α-helical bias pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 143 1 شماره
صفحات -
تاریخ انتشار 2015